Critical role of the extracellular signal–regulated kinase–MAPK pathway in osteoblast differentiation and skeletal development

نویسندگان

  • Chunxi Ge
  • Guozhi Xiao
  • Di Jiang
  • Renny T. Franceschi
چکیده

The extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase (MAPK) pathway provides a major link between the cell surface and nucleus to control proliferation and differentiation. However, its in vivo role in skeletal development is unknown. A transgenic approach was used to establish a role for this pathway in bone. MAPK stimulation achieved by selective expression of constitutively active MAPK/ERK1 (MEK-SP) in osteoblasts accelerated in vitro differentiation of calvarial cells, as well as in vivo bone development, whereas dominant-negative MEK1 was inhibitory. The involvement of the RUNX2 transcription factor in this response was established in two ways: (a) RUNX2 phosphorylation and transcriptional activity were elevated in calvarial osteoblasts from TgMek-sp mice and reduced in cells from TgMek-dn mice, and (b) crossing TgMek-sp mice with Runx2+/- animals partially rescued the hypomorphic clavicles and undemineralized calvaria associated with Runx2 haploinsufficiency, whereas TgMek-dn; Runx2+/- mice had a more severe skeletal phenotype. This work establishes an important in vivo function for the ERK-MAPK pathway in bone that involves stimulation of RUNX2 phosphorylation and transcriptional activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of the ERK1/2 mitogen-activated protein kinase cascade by dentin matrix protein 1 promotes osteoblast differentiation.

DMP1 has been shown to play many roles in osteogenesis. We recently demonstrated that calcium-mediated stress kinase activation by DMP1 leads to osteoblast differentiation. In this study we demonstrate that DMP1 can also activate the extracellular signal-regulated kinase (ERK)-MAPK pathway. This activation was mediated through the RGD integrin-binding domain in DMP1. Further, we demonstrate tha...

متن کامل

Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways

Physical exercise is able to improve skeletal health. However, the mechanisms are poorly known. Irisin, a novel exercise-induced myokine, secreted by skeletal muscle in response to exercise, have been shown to mediate beneficial effects of exercise in many disorders. In the current study, we demonstrated that irisin promotes osteoblast proliferation, and increases the expression of osteoblastic...

متن کامل

Effect of phosphatidyl inositol 3-kinase, extracellular signal-regulated kinases 1/2, and p38 mitogen-activated protein kinase inhibition on osteogenic differentiation of muscle-derived stem cells.

Skeletal muscle-derived stem cells (MDSCs) can undergo osteogenesis when treated with bone morphogenetic proteins (BMPs), making them a potential cell source for bone tissue engineering. The signaling pathways that regulate BMP4-induced osteogenesis in MDSCs are not well understood, although they may provide a means to better regulate differentiation during bone regeneration. The objective of t...

متن کامل

Role of Map4k4 in Skeletal Muscle Differentiation: A Dissertation

Skeletal muscle is a complicated and heterogeneous striated muscle tissue that serves critical mechanical and metabolic functions in the organism. The process of generating skeletal muscle, myogenesis, is elaborately coordinated by members of the protein kinase family, which transmit diverse signals initiated by extracellular stimuli to myogenic transcriptional hierarchy in muscle cells. Mitoge...

متن کامل

S100A9 aggravates bleomycin-induced dermal fibrosis in mice via activation of ERK1/2 MAPK and NF-κB pathways

Objective(s): This study aims to investigate the pathogenicity and possible mechanisms of S100A9 function in mice models of scleroderma. Materials and Methods: The content of S100A9 in the skin tissues of mice with scleroderma was determined. Different concentrations of bleomycin (BLM) and S100A9 were subcutaneously injected into the backs of mice simultaneously, and then pathological changes i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 176  شماره 

صفحات  -

تاریخ انتشار 2007